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ABSTRACT 

We examine a linear fractional flow model which can he 
interpreted as a Markov chain with partially controlled 
transition probabilities. The paper classifies the set L 
of limiting distributions and details several of its proper- 
ties. A precise classification in a three dimensional case 
is presented. 



1.  INTRODUCTION 

This paper identifies the set of limiting solutions for the n dimensional 

constrained linear systütn 

x(t + 1) = x(t)P + u(t) , 

(1) 

x(t)e = 1 , u(t) ^0   t = 0,1,2, ... 

where e is a column vector with each of Its n elements equal to one. The 

initial vector x(0) ^ 0 is given, and the n x n matrix P is nonnegative. 

In general, we assume w = (I - P)e > 0 and that (I - P) has an inverse. 

Our principal result, however, requires slightly stronger assumption.  It fol- 

lows that x(t)  is always a nonnegative vector with components summing to one; 

i.e.,  x(t)  is the distribution of some quantity at time t . Equation (1) 

shows how that distribution can change over discrete time. 

Bartholomew, [1] and [2], has derived an equivalent expression of the 

dynamics (1) in which x(t)  is the distribution of a partially controllable 

Markov process.  The equivalence is based on the identity x(t)w = u(t)e , 

which holds if x(t) and u(t)  solve (1).  For any solution of (1) we define 

z(t) and Q[z(t)]  by 

( x(t)  if u(t) = 0   1 
(2) z(t) = 

I u(t)/u(t)e otherwiseJ 

and 

Q.MzCt)! = P^ + Wjz^t) , 

or in matrix notation 

Q[z(t)] = P + wz(t) . 

Since w is a column vector, wz(t)  is an n * n matrix. 



Note that  z(t) >^ 0 , z(t)e = 1 , and that Q  [z(t)]  is a stochastic 

matrix.  It follows that 

(3) x(t + 1) = x(t)Q[z(t)] . 

Now, in contrast, suppose z(t)  is any sequence with z(t) _> 0 , 2(t)e " 1 . 

Given x(0) , we define Q[z(t)] and x(t) by (2) and (3). It is apparent that 

u(t) - [x(t)w]z(t)  and x(t) will solve (1). 

This paper characterizes the set L of limiting distributions. We can say, 

roughly, that for any x(t) and u(t) satisfying (1), x(t) converges geome- 

trically to L . The set L has two other interesting properties. First, let 

a closed set A be defined as a trapping set  if x(0) e A* x(l) E A . We 

find that L is the smallest trapping set.  Second, if x(0) ^ L , then it is 

not possible to return to x(0) ; in contrast, if x(0) is in the relative in- 

terior of L , it is possible to return to x(0)  in a finite number of periods. 

Section 2 motivates system (1) in the context of a manpower planning prob- 

lem. Section 3 is devoted to definitions, a statement of the theorem, and a 

discussion of the result.  In Section 4 we examine a special case with n = 3 , 

and obtain a precise characterization of the set L . Proofs are included in 

Section 5. 

This paper extends and strengthens several results of Toole [7]. Specific 

references to Toole's work is included as it appears. For completeness we have 

Included short proofs of several of Toole's results. 



2.    MOTIVATION-MANPOWER  FLOW 

Consider an organization with    n    job classifications called ranks.     Let 

M. .    be the fraction of workers in rank    i    that move to rank    j    in one period 
1.1 

and let    v.(t) j^ 0    be  the number of workers hired  into rank    j    in period    t  . 

Finally let    y.(t)    be  the number in rank    j     at time    t   .    It follows that 

(A) y (t + 1) -   I   y.(t)M     + v (t) 
j J_I    •'■       ij       J 

or in matrix notation    y(t + 1) = y(t)M + v(t)   . 

The initial  inventory of manpower  is given by    y(0)  >^ 0 .    Assume the 

organization is growing constantly at rate    (Ö - 1)   ;  thus the size at time 

t    is    Oty(0)e  .     Let    x(t)    be defined as    x(t) = y(t)/ety(0)e , and define 

t+1 
u(t) = v(t)/9      y(0)e .    Thon   x(t)    and    u(t)    obey Equation (1) of Section 1 

with    P « M/e  . 

As a second manpower example consider an organization with n - 1 ranks. 

Define y , v , and M . as above. We add rank n to the organization to 

consist of unfilled positions, and let y (t)  denote the number of unfilled po- 
n 

sitions at time t . Define v (t) as the number of positions open during t 

which remain open in the next period, set M , = 0 for i = 1,2, ..., n and 

n-1 
M  - 1 - I    M. .     for i = 1,2, ..., n - 1 , With these definitions Equation (A) 

j-1 '':, 

holds for our second manpower system. 



3.  DEFINITIONS AND MAIN RESULT 

We define the norm of a vector x c R  to be  ||x|[ = J  |x 

j=l j 
The 

closure, relative interior, and convex hull of sets are denoted cl , ri , and C 

respectively.  We let  <> denote the empty set.  The simplex S = {x [ xe = 1 , 

:; ^ 0} is the set of possible distributions and we topologize the closed subsets 

of the metric space (S,|| j|) with the Hausdorf metric, [3]: 

(5) 

6(A,D) = Max Min ||x - y|| 
xcA yeD 

d(A,D) = Max [6(A,D),6(D,A) ] . 

Let E = {x | x e S,x >^ xP} be defined as the set of equilibrium distribu- 

tions; then the solution x(t) = x for all t is feasible for (1) if and only 

if x e E .  Now choose any z e S and consider the stochastic matrix 

Q(z) = P + wz where w = (I - P)e > 0 . When (I - P) has an inverse N , 

Toole [7] has demonstrated that x = zN/zNe is the unique x r. S such that 

x = xQ(z) .  It follows that x e E if and only if x is a stationary vector 

of some stochastic matrix Q(z) for z a S   . 

Suppose x = xQ(z) , x c S .  It does lot  follow that for any x(0) , with 

u(t) = (x(t)w)z , we have x(t) -► x . Consider P and z below. 

P = 

0 10 

0 0 1 

'-S 0 Oj 

z = (1,0,0) 

(6) 

Qtz] = 

0 10 

0 0 1 

10 0 

=> x = (1/3,1/3,1/3) 

However if x(0) = (a,B,y)   , then x(l) = (Y,a,ß) , x(2) = (ß.y.a) , x(3) = (a.S.y) 

l^hen z is strictly positive, the Markov matrix Q(z)  is regular and we then 

have x(t) •»■ x for any initial x(0) . 

Let A be ^ny nonempty subspl oi  S .'nd R(A) «= fx I x e S,x > yP,y E A} . 



When A is a singleton,  (x) , we use the notation R(x) . For A f $  ,  define 

R (A) - A , R1(A) = R(A) , and for t > I , Rt+1(A) = R(Rt(A)) . For any x E S , 

R (x) is the set of x(t)  feasible in (1) given that x(0) = x . 

It is easy to verify that if A is closed, convex, or polyhedral then R(A) 

will have the same property. Moreover, A C B => R(A) c R(B) , and CR(A) »= R(CA) , 

and cl R(A) = R(cl A) . We also can see that for any t , E c Rt(E) C Rt(S) C S . 

Therefore we define the limiting set L as L = H Ät(S) . Note that L is 
t=0 

nonempty, closed and convex. Toole [7] has demonstrated 

Proposition 1: 

R(L) = L . 

Proof; 

y e R(L) =* y e S and y ^ xP for some x e L C Rt(S) for all t ^ 0 . 

Thus y e R  (S) for all t _> 0 =«> y c L . Conversely if x c L , then x c S , 

and since x e R (S) for all t >^ 1 , there exists a y(t) e R  (S) such that 

x > y(t)P . Let y be an accumulation point of the y(t) . It follows that 

y e L , thus x ^ yP =«> x e R(L) .■ 

Proposition 2:  (Stanford [6], Toole [7]) 

If (I - P) has an inverse then 

(i) int E i* (j) . 

(ii) For any x(0) , and y c int E , there exists a finite T such that 

y c Rt(x(0)) for t > T . 

Proof: 

We have (I - P)"1 > 0 . If b > 0 , then y = b(I - P)-1 > 0 , and 

x = y/ye ^atlf^ies x e S , x > xP . 

x(I - P) 
With x defined as above, we have ?. -~  —* , a strictly positive 



appointment vector.  Therefore x(0)Q (z)  ■> x e ri E . There exists an E 

neighborhood N (x)  of x  such that for any y E N (x)  we have x E R(y) , 

T-1 
or y > xP .  There is a finite T such that  x(0)Q  (z) £ N (x) . Thus — E 

T t 
x £ R (x(0)) , and since x e E , we have x E R (x(0))  for all t ^ T .■ 

For k >^ 1 , define the k  cycle set as C = {x | x £ R (x)} .  If 

k 1 
x £ C , then it is possible to return to x in k steps; note that C = E 

Define C=uC ;if XEC , there is some finite k such that it is 
k=l 

possible to return to x in k steps. 

* 

Proposition 3;  (Toole [7]) 

[ä H cl C = cl U R (E) C L 

Our theorem strengthens this result considerably. 

Theorem 1; 

If w = (I - P)e > 0 , then 

(i) L is the unique closed nonempty subset of S satisfying R(L) = L . 

(ii) For any closed nonempty subset A of S , 

d(Rt(A),L) £ otd(A,L) 

where 0 _< o < 1 . 

(iii) cl c" = L 

(iv)  If MACS, then R(A) = A implies cl A = L . 

The proof will be presented in Section 5.  It depends in large part on the 

following leraraa: 

Lemma: 

Let o = [1 - 1/2 Min {wi | i = 1,2 n}] < 1 

For any x , y , z £ S , 



Il(x - y)Q(z)|| lojlx - yl| . 

We suspect that a weaker version of the theorem Is valid under the weaker 

hypothesis that (I - P)  is nonsingular. However, the lemma does not generalize 

with that hypothesis.  Recall example (6). Let z = (1,0,0) , y = (0,1,0) and 

x = (0,0,1) . We have 

xQt(z) yQ^z) ||(x - y)Qt(z)|| 

t = 0   (0,0,1) (0,1,0)        2 

t = 1   (1,0,0) (0,0,1)        2 

t = 2   (0,1,0) (1.0,0)        2 

t = 3   (0,0,1) (0,1,0) 2 

This example has 

||(x - y)Qt(z)||  =  ||x - y|! for all    t  . 

Before concluding this section we shall discuss several implications of 

the theorem. First R (A) ->■ L for any nonempty subset A of S . For any 

A we have R (S) I) R (A) •  In addition, there exists a finite T and x c riE 

such that x e R (A)  thus R (A) D R  00 for all t ^ T . The sequences 

t t-T R (S) and R  (x) are closed and converge geometrically to L . Moreover, 

t t-T 
the sequence R (S)  is contracting, and the sequence R  (x) is expanding. 

As a second point, let A be any closed subset such that R(A) C A . To 

see that L C A , assume x e L and x ^ A . It follows that x ^ R (A) for 

all t , and therefore that 

d[Rt(A),L] > d[A,I,1 > Min | |x - y| | > 0 . 
yeA 
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However, the term on the left converges geometrically to zero. 

We observe if x ^ L , then it is Impossible to return to x . If we did 

return to x in k steps then x e C C L . To show that we can return to any 

00 

point in ri L in a finite number of steps we must demonstrate that C  is 

oo k h 
convex.  If x and y are in C  then x E C  and y c C  for finite k 

kh kh 
and h . This implies that both x and y are In C  . Since C   is 

kh   a' 
closed and convex, the line segment joining x and y is in C  C C . It 

follows Rockafellar [5], page 46 that ri L = ri[cl 0°°] = ri c" C C . For any 

x G ri L and y e S , it is possible to move from y to x in a finite number 

of steps. This follows since the sequence of closed sets R (y) -► L , and 

T 
x e ri L ; thus there must exist a finite T such that x e R (y) . In con- 

trast, if x ^ L and the initial y e L , then it is not possible to move from 

y to x in a finite number of steps. 

The next section presents a precise characterization of L in a special 

case. Proofs of Theorem (1) and Lemma (1) are presented in Section 5. 



A.     SPECIAL CASE - A CHARACTERIZATION OF L 

This section examines the special case of 

P = 

pu P12 0 1 

0 P22 P23 

0 0 PiJ 

where we assume 

(i)    wi > 0    i - 1,2,3 

(7) (ii)    p22 > p12 

(ill)    w2 ^ w3 . 

The example corresponds to a three rank manpower hierarchy;  e.g. assistant, asso- 

ciate,  and full professors.    Assumption (i) means it is possible to leave from 

any rank,   (ii)  is satisfied if    p      >_ 1/2    for all.    i    and  (iii)  indicates that 

withdrawal rates are higher  in rank 2 than in rank 3.    We shall present some 

numerical calculations below indicating that the main result of this section 

is true under more general conditions.    The sets    S    and    E    are depicted in 

Figure 1.     In this special case it  is possible to obtain a precise characteri- 

zation of the set    L . 

For    k = 1   ,  2  ,  3    let    Q(k)    be the matrix with 

I'      + w.     if    j = k 
Lk       i 

Vk>= 

ij 
if    j / k 

In the manpower context, Q(i)    corresponds to making all new appointments in 

rank    i  .    For    k = 1  ,   2 ,   3    let    x      be the stationary vectors of the    Q(k)   ; 

k -1 the    x      are proportional to  the  rows of    (1 - P)        and are  the extreme points 

of    E  . 
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Recall that C denotes convex hull.  Define 

F = C{x3Qt:(l).x1Q,:(2),x2Qt(3)   t = 0,1,2, ...} . 

The sequence x Q (j) simply starts at x  and follows appointments in rank 

2 t 
j only for all t . The points x Q (3)  for t ^ 1 all lie on the line 

2  3 
segment  [x ,x ] , thus 

F = C{x3Qt:(l),x1Qt(2),x2   t - 0,1,2, ...} . 

Theorem 2; 

Under the assumptions of this section, 

L = F  . 

This theorem and the analysis developed in its proof have two corollaries. 

Corollary 1: 

For any cycle of length k , at least one element of the cycle lies in E . 

Corollary 2: 

For any solution of (1) and any  c > 0 neighborhood of E we have 

x(t) e N (E)  infinitely often, 
r. 

The result allows us to make an excellent and easily calculated approximation 

of the set L and to gauge the effect of changing parameters on the set of 

limiting possibilities.  Several cases are depicted below. 

In Figure 2, we have w > w„  and Theorem 2 fails. However, in Figure 3, 

w > v      and it is obvious that our approximation is valid. Thus it is sufficient 

but not necessary to have w., < w . 

Figures 3 and 4 show two alternate P matrices and the effect of a change 

in the elements of P on both the equilibrium set E and the limiting set L . 
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5.  PROOFS 

This section details the proofs of Lemma 1 and Theorems 1 and 2. 

Proof of Lemma A: 

For the moment consider z e S fixed.  If x = y , then j |x - y| | = 0 , 

and the Lemma is trivial. If x ^ y , let v. = x. - y  for all i and define 

I+ = {i 1 vi > 0} , I- - {1 I vi < 0} . 

Note that: 

n 
I v = I v + j; v = 0 

i*l    I+ 
i  ^ i 

and 

|v!l - I v - I v. 

i+      r 

therefore 

llvl! -2 I v^-2 I v1 
I+       I 

n + 
For each j  let u, = I   v.Q (z) and let J = Jj j u. > 0} , 

J  .{-i  1 '■J J 

J = {j I u < 0} . Using the same logic as above. 

|ul| - 2 J u. = -2 I Uj 

In the first case, 



lull- 2   1^-2   ^(j^AjW) 

16 

where 

Hence 

=  2    I    v     £   Q    (z)  = 2    I    v r  (z)  , 
•      J i=l i=l    '   J+ 

^(z) =  I QijCz) 

u       = 2 (I  v^z) +   I  v^CzA  < 2   I  virj (z)   . 

If    h+(z) =   Max [r.(z)] , 
lr.I+ 

Null   <  (2   ^vU+Cz)  =h+(z)||v||   . 

In a similar fashion, if 

s.(z) -   I  Q    (z)    and    h'(z)  -  Max[s.(z)] 
_      :lJ -IrT"      1 

id' 

then 

•2   I   -j - -2 I.v1si(z) +   J]   v1s1(z) 
i+ r 

< /-2   I   vAlTCz) 

Therefore       u      < h (z)    v      . 

To summarize in terms of    x , y ,  z   , 

(x - y)Q(z)||  <  ||x - y"| Min Maxf I   Q^Cz)!   .  MaxH   ^ij^)" 

For each    Q..(z)    we have    Q      >^ w z.    where    w    = Mln (w    j   i = 1,2,   ...,  n)  >  0 

Thus 
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Min +" [![ Vz>] - w* JL'J 

and 

Similarly 

MaxH   Qlj(z)l 1 1 - w     l   z^  . 

I+ LJ+ J J~ 

^x T l  Q^ (z)"!   < 1 - w     l   zi  . 

r LJ"      J J
+ 

It follows, that for all z e S , 

Min 

Thus 11 (x - y)Q(z) | {. 

Proof of Theorem (1) 

First assume 

iax n Q^^)]» 
Maxr i Qi^2) 

i+ LJ+   "   J  r Lj- 

i(i-4)llx-yll" 

11 - Y< i 

(8) d[R(A),R(D)]   < od(A,D) 

for all closed nonempty sets A and D .  It follows immediately that L is 

the unique fixed point of R , and with D = L in (8), we obtain for each t > 1 

dlR^A)^] < o'dtA.L] . 

From Toole [7] we have    Rt(E) C cl C0"    for all    t  , and    C* C L .    Since    ^(E) 

is an expanding sequence of closed nets converging to    L , we must have    L = cl C 

Finally,  for any nonempty    A   with    R(A) = A    we have    cl R(A) ■ R(cl A) = cl A , 

which implies    cl A = L  . 

The proof  is concluded by verifying Equation  (8). 
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Let h(u) = Min ||u-vil . Then 6[R(A),R(D)] - Max h(u) . Let u 
VER(D) ueR(A) 

in R(A) be such that 

h(u*) = 6[R(A),R(D)] = Min ||u* - v|| . 
vcR(D) 

Note that 

6[R(A),R(D)] = 6[{u*},R(D)] . 

* 
There exist some x in A and z E S such that u = xQ(z) . Now choose 

y £ D so that ||x - y|I - Min!|x - y| | «= 6[{x},D] . Therefore yQ(z) c R(D) 
ueD 

and 

6[R(A),R(D)] » Min | |u* - v| | < ! | (x - y)Q(2) 11 . 
veR(D) 

From Lemma (1), 

Ö[R(A),R(D)] < o|Ix - y|I = a6[{x},D] . 

Also 

6[{x},D]  < Max 6[{u},D]  -  6[A,D] 
ucA 

We have shown that 

6tR(A),R(D)] < o6[A,D] . 

It follows in a similar way that 

6[R(D),R(A)] < 0«[D,A] . 

Therefore 

d[R(A),R(D)]  < od(A,D)   .Ü 
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Proof of Theorem (?.) ; 

Since F is nonempty and closed, it suffices by Theorem 1, to prove that 

R(F) = F . 

If ACS is polyhedral with extreme points u  , £ = 1,2, ..., we may 

represent R(A) as 

Cfu^QCk)  for 1=1,2,   .... k = 1,2,3} . 

Therefore 

R(F) = C{xiQn((i + Dmod 3)Q(j) , i = 1,2,3, j = 1,2,3, n = 0,1,2, ...} . 

It is clear that R(F) D F • ln demonstrating R(F) C F , our attendant 

arguments will be sketchy—we shall omit a large amount of tedious algebra. 

Let 

2 
V - {y : y G S,y2 < (yP)2} 

and 

V3 = {y : y E S,y3 < (yP)^ . 

3 t      2   3 With the aid of Figure 5, we see that if x Q (1) e V - V , we must have 

xV(l)Q(3) e C{..3,x1Q(3),x3Q,:+1(l)} 

and 

x3Qt(l)Q(2) e C{x
3Q(2),x1Q(2),x3Qt+1(l)} . 

Similarly, if x1Qt(2) is in V3 - V2 , then 

x1Qt(2)Q(3) e C{x2Q(3),x1Q(3) »xV^CZ)} 

and 
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xV(2)Q(l) e C{x2Q(l),x1,x1Qt+1(2)} 

Also, it is clear that 

x2Qt(3)Q(l) e C{x3Q(l),x2Q(l)} 

and 

x2Qt(3)Q(2) e C{x3,x2} . 

2 
Now it follows from the condition    p-- 1 P^    tliat    x Q^1^  e F » an^ it i,s 

easy to show that we always have    x Q(3) c F •    Hence we have established that 

3 t each point of    R(F)     is in    F ,  provided that the sequences    {x Q (1)}    and 

{x1Qt(2)}    remain in the sets    V    - V     and    V3 - V2    respectively. 

It 3        2 The condition    p22 >^ p.«    guarantees that if    x Q (*.} e V   - V    , then 

(2) x1Qt+1(2)   E C{x1Qt(2),x2, (0,1,0)} C V3 - V2  . 

3 t     2   3 
With the requirements p22 >^ p.« and w« - wi » we ^ave t^at x Q (1) c V - V 

Implies 

(3) x3Qt+1(l) E C{x3Qt(l).x1,(l,0,0)> C V2 - V3 , 

and the proof is complete.' 
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